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Abstract

We study a well known noisy model of the graph iso-
morphism problem. In this model, the goal is to per-
fectly recover the vertex correspondence between two
edge-correlated graphs, with an initial seed set of cor-
rectly matched vertex pairs revealed as side information.
Specifically, the model first generates a parent graph G0

from Erdős-Rényi random graph G(n, p) and then ob-
tains two children graphs G1 and G2 by subsampling
the edge set of G0 twice independently with probability
s = Θ(1). The vertex correspondence between G1 and
G2 is obscured by randomly permuting the vertex labels
of G1 according to a latent permutation π∗. Finally, for
each i, π∗(i) is revealed independently with probability
α as seeds.

In the sparse graph regime where np ≤ nε for any
ε < 1/6, we give a polynomial-time algorithm which
perfectly recovers π∗, provided that nps2 − log n →
+∞ and α ≥ n−1+3ε. This further leads to a sub-
exponential-time, exp

(
nO(ε)

)
, matching algorithm even

without seeds. On the contrary, if nps2 − log n =
O(1), then perfect recovery is information-theoretically
impossible as long as α is bounded away from 1.

In the dense graph regime, where np = bna, for
fixed constants a, b ∈ (0, 1], we give a polynomial-
time algorithm which succeeds when b = O(s) and
α = Ω

(
(np)−b1/ac log n

)
. In particular, when a = 1/k

for an integer k ≥ 1, α = Ω(log n/n) suffices, yielding
a quasi-polynomial-time nO(logn) algorithm matching
the best known algorithm by Barak et al. for the
problem of graph matching without seeds when k ≥
153 and extending their result to new values of p for
k = 2, . . . , 152.

Unlike previous work on graph matching, which
used small neighborhoods or small subgraphs with
a logarithmic number of vertices in order to match
vertices, our algorithms match vertices if their large
neighborhoods have a significant overlap in the number
of seeds.

∗Supported by NSF grant CCF-1755960.
†Massachusetts Institute of Technology.
‡Duke University.

1 Introduction

In this paper, we study a well-known model of noisy
graph isomorphism. Our main interest is in polynomial
time algorithms for seeded problems where the match-
ing between a small subset of the nodes is revealed.
For seeded problems, our result provides a dramatic im-
provement over previously known results. Our results
also shed light on the unseeded problem. In particu-
lar, we give (the first) sub-exponential time algorithms
for sparse models and an nO(logn) algorithm for dense
models for some parameters, including some that are
not covered by recent results of Barak et al. [BCL+18].

We recall that two graphs are isomorphic if there
exists an edge-preserving bijection between their vertex
sets. The Graph Isomorphism problem is not known to
be solvable in polynomial time, except in special cases
such as graphs of bounded degree [Luk80] and bounded
eigenvalue multiplicity [BGM82]. However, a recent
breakthrough of Babai [Bab16] gave a quasi-polynomial
time algorithm.

In a number of applications including network se-
curity, systems biology, computer vision, and natural
language processing, we are given two graphs as input
which we believe have an underlying isomorphism be-
tween them. However, they are not exactly isomorphic
because they have each been perturbed in some way,
adding or deleting edges randomly. This suggests a
noisy version of Graph Isomorphism also known as graph
matching [CFSV04, LR13], where we seek a bijection
that minimizes the number of edge disagreements.

Given two graphs with adjacency matrices G1 and
G2, if our goal is to minimize the `2 distance between
G1 and some permuted version of G2, then graph
matching can be viewed as a special case of the quadratic
assignment problem (QAP) [BCPP98]: namely,

min
Π
‖G1 −ΠG2Π>‖2F ,(1.1)

where Π ranges over all n×n permutation matrices, and
‖A‖2F =

∑
ij A

2
ij denotes the Frobenius norm. QAP

is NP-hard in the worst case. There are exact search
methods for QAP based on branch-and-bound and cut-
ting planes, as well as various approximation algorithms
based on linearization schemes, and convex/semidefinite
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programming relaxations (see [FQRM+16] and the ref-
erences therein). However, approximating QAP within

a factor 2log1−ε(n) for ε > 0 is NP-hard [MMS10].
These hardness results only apply in the worst case,

where the two graphs are designed by an adversary.
However, in many aforementioned applications, we are
not interested in worst-case instances, but rather in
instances for which there is enough information in
the data to recover the underlying isomorphism, i.e.,
when the amount of data or signal-to-noise ratio is
above the information-theoretic limit. The key question
is whether there exists an efficient algorithm that is
successful all the way down to this limit. In this vein,
we consider the following random graph model denoted
by G(n, p; s) [PG11].

Definition 1. (Correlated Erdős-Rényi model)
Suppose we generate a parent graph G0 from the Erdős-
Rényi random graph model G(n, p). For a fixed
realization of G0, we generate two subgraphs G1 and G2

by subsampling the edges of G0 twice. More specifically,

• We let G∗1 be a random subgraph of G0 obtained
by including every edge of G0 with probability s
independently.

• We repeat the above subsampling procedure, but
independently to obtain another random subgraph
of G0, denoted by G2.

To further model the scenario that we do not know the
vertex correspondence between G1 and G2 a prior, we
sample a random permutation π∗ over [n] and let G1

denote the graph obtained by relabeling every vertex i in
G∗1 as π∗(i).

The goal is to exactly recover π∗ from the observation
of G1 and G2 with high probability, i.e., to design an
estimator π̂ based on G1 and G2 such that

P {π̂(G1, G2) = π∗} → 1, as n→∞.

As a motivating example, we can model G0 as
some true underlying friendship network of n persons,
G1 is an anonymized Facebook network of the same
set of persons, and G2 is a Twitter network with
known person identities. If we can recover the vertex
correspondence between G1 and G2, then we can de-
anonymize the Facebook network G1 (this example
ignores many important facts such as additional graph
structures in real life networks).

Note that s is equal to the probability of e ∈ E(G2)
conditional on e ∈ E(G1), and hence can be viewed as
a measure of the edge correlations. Throughout this
paper, without further specifications, we shall assume
s = Θ(1).

In the fully sampling case s = 1, graph matching un-
der G(n, p; 1) reduces to the Graph Automorphism prob-
lem for Erdős-Rényi graphs. In this case, a celebrated
result [Wri71] shows that if log n + ω(1) ≤ np ≤ n −
log n−ω(1), then with probability 1−o(1), the size of the
automorphism group of G0 is 1 and hence the underly-
ing permutation π∗ can be exactly recovered; otherwise,
with probability 1− o(1), the size of the automorphism
group of G0 is strictly bigger than 1 and hence exact
recovery of the underlying permutation is information-
theoretically impossible. Recent work [CK16, CK17]1

has extended this result to the partially sampling case
s = Θ(1) and p ≤ 1/2, showing that the Maximum
Likelihood Estimator, or equivalently the optimum of
QAP (1.1), coincides with the ground truth π∗ with
high probability, provided that nps2 ≥ log n+ ω(1); on
the contrary, any estimator is correct with probability
at most o(1), if nps2 ≤ log n− ω(1).

From a computational perspective, in the fully
sampling case s = 1, there exist linear-time algo-
rithms which attain the recovery threshold, in the
sense that they exactly recover the underlying permu-
tation with high probability whenever np = log n +
ω(1) [Bol82, CP08]. However, in the partially sam-
pling case, it is still open whether any efficient algorithm
can succeed close to the threshold. A recent break-
through result [BCL+18] obtains a quasi-polynomial-
time (nO(logn)) algorithm which succeeds when np ≥
no(1) and s ≥ (log n)−o(1). However, this is still far away
from the information-theoretic limit nps2 ≥ log n+ω(1).

Another line of work [PG11, YG13, KL14, KHG15,
LFP13, FAP18, SGE17] in this area considers a relaxed
version of the graph matching problem, where an initial
seed set of correctly matched vertex pairs is revealed
as side information. This is motivated by the fact that
in many real applications, some side information on the
vertex identities are available and have been successfully
utilized to match many real-world networks [NS09,
NS08]. Formally, in this paper, we assume the seed set
is randomly generated as follows.

Definition 2. (Seeded graph matching) In addi-
tion to G1, G2 that are generated under G(n, p; s) with
a latent permutation π∗, we have access to π0 such that
π0(i) = π∗(i) with probability α and π0(i) =? with prob-
ability 1 − α independently across different i. The goal
is to recover π∗ based on G1, G2, and π0.

The vertex i such that π0(i) = π∗(i) is called seeded
vertices and the set of seed vertices is denoted by I0.
Note that according to our model, the number of seeds

1 In fact, a more general correlated Erdős-Rényi ran-
dom graph model is considered in [CK16, CK17], where
P {G1(i, j) = a,G2(i, j) = b} = pa,b for a, b ∈ {0, 1}.
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|I0| is distributed as Binom(n, α). For a given size K, we
could also consider a deterministic size model where I0
is chosen uniformly at random from all possible subsets
of [n] with size K. The main results of this paper readily
extend to this deterministic size model with K = bnαc.

The results of the seeded graph matching turn out
to be useful for designing graph matching without seeds.
On the one hand, when a seed set of size K is not given,
we could obtain it in nO(K) steps by randomly choosing
a set of K vertices and then enumerating all the possible
mapping. This is known as the beacon set approach
to graph isomorphism [Lip78]. On the other hand, we
could first apply a seedless graph matching algorithm
and then apply a seeded graph matching algorithm to
boost its accuracy. This two-step algorithms have been
successful both theoretically [BES80] [Bol01, Section
3.5] and empirically [LFP13].

In the sparse graph regime np = Θ(log n), it

is shown in [YG13] that if α = Ω(1/ log4/3 n), or

equivalently, the size of the seed set is Ω(n/ log4/3 n),
then a percolation-based graph matching algorithm
correctly matches n − o(n) vertices in polynomial-time
with high probability. In the dense graph regime
np = nδ for some constant δ ∈ (0, 1), a seed set of
size Θ(n1−δ) suffices as shown in [YG13]. Another
work [KL14] shows that if nps2α ≥ 24 log n, then
one can match all vertices correctly in polynomial-time
with high probability based on counting the number
of “common” seeded vertices. Note that this exact
recovery result requires the seed set size to be linear
in n in the sparse graph regime np = Θ(log n).

In summary, despite a significant amount of previ-
ous work on seedless and seeded graph matching, the
following two fundamental questions remain elusive:

Question 1. In terms of graph sparsity, can we
achieve the information-theoretic limit nps2 − log n →
+∞ in sub-exponential, or polynomial time?

Question 2. In terms of seed set, what is the minimum
number of seeds required for exact recovery in sub-
exponential, or polynomial time?

Our main results shed light on these two ques-
tions by improving the state-of-the-art of seeded graph
matching. First, we show that it is possible to achieve
the information theoretic limit nps2 ≥ log n + ω(1)
of graph sparsity in polynomial-time. Then, we show
the number of seeds needed for exact recovery in
polynomial-time can be as low as nε in the sparse graph
regime (np ≤ nε) and Ω(log n) in the dense graph
regime.

1.1 Main Results We first consider the sparse graph
regime.

Theorem 1.1. Suppose np ≤ n1/2−ε for a fixed con-
stant ε > 0 and s = Θ(1). Assume

nps2 − log n→ +∞(1.2)

α ≥ n−1/2+3ε.(1.3)

Then there exists a polynomial-time algorithm, namely
Algorithm 1, which outputs π̂ = π∗ with probability at
least 1− o(1) under the seeded G(n, p; s, α) model.

Notice that (1.2) is the information-theoretic limit
for graph matching under the seedless G(n, p; s) model.
In fact, Theorem 1.2 shows that (1.2) is necessary for
seeded graph matching as long as α is bounded away
from 1. Its proof is standard and can be found in the
full paper [MX18].

Theorem 1.2. If

nps2 − log n = O(1),

then any algorithm outputs π̂ 6= π∗ with at least a
probability of Ω

(
(1− α)2

)
under the seeded G(n, p; s, α)

model.

Also, the condition (1.3) requires that the size of
the seed set is n1/2+3ε compared to the best previously
known results that required the seed set to be almost
linear in n.

It is natural to ask if n1/2 seeded nodes are required
for polynomial time algorithm. While from the proof
of Theorem 1.1, it might look that n1/2 is optimal due
to the birthday paradox effect, it turns out we can do
better!

The following result relaxes the size of seed set
needed to n3ε when the average degree is smaller.

Theorem 1.3. Suppose np ≤ nε for a fixed constant
ε < 1/6 and s = Θ(1). Assume

nps2 − log n→ +∞
α ≥ n−1+3ε.

Then there exists a polynomial-time algorithm, namely
Algorithm 3, which outputs π̂ = π∗ with probability at
least 1− o(1) under the seeded G(n, p; s, α) model.

We next consider the dense graph regime, where we
assume the average degree np is parameterized as:

np = bna(1.4)

for some fixed constants a, b ∈ (0, 1]. Let

d =

⌊
1

a

⌋
+ 1.(1.5)
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Theorem 1.4. Consider the dense graph regime (1.4).
Assume

b ≤ s

16(2− s)2
,(1.6)

and

α ≥ 300 log n

(nps2)d−1
,(1.7)

where d is given in (1.5). Then there exists an
polynomial-time algorithm, namely Algorithm 2, which
outputs π̂ = π∗ with probability 1 − 4n−1 under the
seeded G(n, p; s, α) model.

Note that d is the diameter of G(n, p) in the
regime (1.4) [Bol01, Corollary 10.12]. The seed set
size condition (1.7) stems from the fact that we match
two vertices based on the number of “common” seeded
vertices in their neighborhoods of radius d− 1.

Our results for seeded graph matching also imply
the results for graph matching without seeds.

Theorem 1.5. Suppose a Seeded Graph Matching al-
gorithm outputs π̂ = π∗ with high probability under
the seeded graph matching model G(n, p; s, α). Assume
nps2 − log n → +∞ and αn → +∞. Then there ex-
ists an algorithm, namely Algorithm 4, which calls the
Seeded Graph Matching algorithm nO(αn) times and out-
puts π̂ = π∗ under the seedless model G(n, p; s) with high
probability.

Remark 1. Consider the dense regime (1.4) with a =
1/k for an integer k ≥ 1. Then d = k + 1 and
(np)d−1 = bkn. Hence, as shown by Theorem 1.4,
αn ≥ 300 log n(bs2)−k, or equivalently Ω(log n) number
of seeds, suffice for exact recovery in polynomial-time.
Since we can enumerate over all possible matchings
for log n seeds in quasi-polynomial nO(logn) time, this
implies a quasi-polynomial time matching algorithm
even without seeds, as shown by Theorem 1.5. The
previous work [BCL+18] gives a quasi-polynomial time
matching algorithm in the range

np ∈
[
no(1), n1/153] ∪ [n2/3, n1−ε

]
.

Our results complement their results by filling in gaps in
the above range with points np ∈ {bn1/k : 1 ≤ k ≤ 152}.

1.2 Key Algorithmic Ideas and Analysis Tech-
niques Most previous work [PG11, YG13, KL14,
LFP13, FAP18, SGE17] on seeded graph matching ex-
ploits the seeded information by looking at the num-
ber of seeded vertices that are direct neighbors of a
given vertex. Since the average degree of a vertex is np,

npα � 1 is needed so that there are sufficiently many
seeded vertices that are direct neighbors of a given ver-
tex.

Our idea is to explore much bigger (“global”) neigh-
borhoods of a given vertex up to radius ` for a suitably
chosen `, and match two vertices by comparing the set of
seeded vertices in their `-th local neighborhoods. This
idea was used before in the noiseless and seedless case,
in [Bol82, CP08] but to the best of our knowledge was
not used in the noisy and seeded case. Since we are
looking at global neighborhoods, we can only perform
very simple tests. Indeed, the test we perform to check
if two vertices are matched is just to count how many
seeded vertices do the two neighborhoods have in com-
mon. Thus, our algorithms are very simple.

The main challenge in the analysis is to control the
size of neighborhoods of the coupled graphs G0, G1 and
G2. In this regard, we draw on a number of tools from
the literature on studying subgraph counts [JLR11] and
the diameter in random graphs [Bol01]. See the full
paper [MX18] for details.

2 Our Algorithms

Before presenting our algorithms, we first explain why
(1.2) is needed for graph matching under G(n, p, s).
Denote the intersection graph and the union graph by
G∗1 ∧G2 and G∗1 ∨G2. Then

G∗1 ∧G2 ∼ G(n, ps2) and G∗1 ∨G2 ∼ G(n, ps(2− s)).

Notice that G∗1∧G2 contains the statistical signature for
matching vertices, as a subgraph in G∗1∧G2 will appear
in both G1 and G2. If nps2−log n = O(1), then classical
random graph theory implies that with high probability,
G∗1 ∧ G2 contains isolated vertices. The underlying
true vertex correspondence of these isolated vertices
cannot be correctly matched; hence the impossibility of
exact recovery. See the full paper [MX18] for a precise
argument.

In contrast, if nps2 − log n→ +∞, then G∗1 ∧G2 is
connected with high probability. Moreover, for a high-
degree vertex i in G∗1 ∧ G2, its local neighbhorhood
grows like a branching process. In particular, the
number of vertices at distance ` from i is approximately
(nps2)`. Furthermore, for a pair of two vertices i, j
chosen at random in G∗1 ∨ G2, the intersection of the
local neighborhoods of i and j is typically of size
O
(
(nps)2`n−1

)
. Therefore, if (nps2)` � (nps)2`n−1

and α(nps2)` � 1, a large number of vertices can be
distinguished with high probability based on the set of
seeded vertices in their `-th local neighborhoods. This
is the key idea underlying our algorithms.

We shall use the following notations of local neigh-
borhoods. For a given graph G, we denote by ΓGk (u) the

Copyright © 2019 by SIAM
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set of vertices at distance k from v in G:

ΓGk (u) = {v ∈ V (G) : d(u, v) = k}(2.8)

and write NG
k (u) for the set of vertices within distance

k from u:

NG
k (u) = ∪ki=0Γi(u).(2.9)

When the context is clear, we abbreviate ΓGk (u) and
NG
k (u) as Γk(u) and Nk(u) for simplicity.

2.1 A Simple Algorithm in Sparse Graph
Regime We first present a simple seeded graph match-
ing algorithm which succeeds up to the information-
theoretic limit in terms of graph sparsity when the ini-
tial seed set is of size n1/2+3ε.

The idea of the algorithm is based on matching `-
th local neighborhoods of two vertices by finding inde-
pendent paths (vertex-disjoint except for the starting
vertex) to seeded vertices. The ` is chosen such that
(np)` ≈ n1/2−ε. In this setting, we expect that if i in
G1 and j in G2 are true matches, then their local neigh-
borhoods intersect a lot; if i and j are wrong matches,
then their local neighborhoods barely intersect. Hence,
if α(nps2)` � 1, then we can find a sufficiently large
number of, say m, independent (vertex-disjoint except
for i) paths of length ` from i to m seeded vertices in

Γ
G∗1∧G2

` (i). Such m paths of length ` form a starlike tree
T in G∗1 ∧ G2 with root vertex i and a set of m seeded
leaves, denoted by L (See Fig. 1 for an example of m = 3
and ` = 2). Note that T will appear in G2 with root
vertex i and the set of seeded leaves L; it will also ap-
pear in G1 with root vertex π∗(i) and the corresponding
set of seeded leaves π∗(L). However, since the `-th local
neighborhoods of two distinct vertices barely intersect,
T will not appear in G∗1 ∨ G2 with a root vertex other
than i. Therefore, we can correctly match the vertex
π∗(i) in G1 with the high-degree vertex i in G2 by find-
ing such a starlike tree T , or equivalently m independent
`-paths to a set of m common seeded vertices.

There are two tuning parameters ` and m in Algo-
rithm 1. Later in our analysis, we will optimally choose

` =

⌊(
1

2
− ε
)

log n

log(nps2)

⌋
≥ 1(2.10)

and

m =

⌈
2

ε

⌉
.(2.11)

Note that when nps2−log n→ +∞, there may exist
vertices with small degrees. In fact, classical random
graph results say that the minimum degree of G(n, p) is

Algorithm 1 Graph matching based on counting inde-
pendent `-paths to seeded vertices

1: Input: G1, G2, π0, m, ` ∈ Z
2: Output: π̂.
3: Match high-degree vertices: For each pair of

unseeded vertices i1 ∈ V (G1) and i2 ∈ V (G2),
if there are m independent `-paths in G2 from i2
to a set of m seeded vertices L ⊂ ΓG2

` (i2), and
there are m independent `-paths in G1 from i1 to
the corresponding set of m seeded vertices π0(L) ⊂
ΓG1

` (i1), then set π̂(i2) = i1. Declare failure if there
is any conflict.

4: Match low-degree vertices: For every i2 ∈ I0,
set π̂(i2) = π0(i2). For all the pairs of unmatched
vertices (i1, i2), if i1 is adjacent to a matched vertex
j1 in G1 and i2 is adjacent to vertex π̂(j1) in G2, set
π̂(i2) = i1. Declare failure if there is any conflict.

5: Output π̂ to be a random permutation when failure
is declared or there is any vertex unmatched.

k with high probability for a fixed integer k, provided
that

(k−1) log log n+ω(1) ≤ nps2−log n ≤ k log log n−ω(1),

see, e.g., [FK15, Section 4.2]. Hence, due to the
existence of low-degree vertices, we may not be able
to match all vertices correctly at one time based on
the number of independent paths to seeded vertices.
Our idea is to first match high-degree vertices and then
match the remaining low-degree vertices with the aid
of high-degree vertices matched in the first step. In
particular, we let

τ =
nps2

log(nps2)
.(2.12)

We say a vertex i high-degree, if its degree di ≥ τ in
G∗1 ∧G2; otherwise, we say it is a low-degree vertex. As
we will see in Section 3, conditioning on thatG∗1∧G2 and
G∗1 ∨ G2 satisfy some typical graph properties, all low-
degree vertices can be easily matched correctly given a
correct matching of high-degree vertices.

In passing, we remark on the time complexity of
Algorithm 1. Note that for ease of presentation, in
Algorithm 1, we do not specify how to efficiently find
out whether there exist m independent `-paths in G2

from i2 to seed set L ⊂ ΓG2

` (i2), and m independent
`-paths in G1 from i1 to the corresponding seed set
π0(L) ⊂ ΓG1

` (i1). It turns out for a given pair of vertices
i1, i2, this task can be reduced to a maximum flow
problem in a directed graph, which can be solved via
Ford–Fulkerson algorithm [FF56] in O(nα) time steps

Copyright © 2019 by SIAM
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(see the full paper [MX18] for details). Since there are
at most n2 pairs of vertices i1, i2 to consider, Step 3
of Algorithm 1 taks at most O(n3α). The Step 4 of
matching low-degree vertices in Algorithm 1 takes at
most O(n3p) time steps. Hence, in total Algorithm 1
takes at most O

(
n3(α+ p)

)
time steps.

2.2 A Simple Algorithm in Dense Graph
Regime In this subsection, we consider the dense
graph regime given in (1.4), where np = bna and d =
b1/ac+ 1. In this setting, since pdnd−1− 2 log n→ +∞
and pd−1nd−2 − 2 log n ≤ −∞, it follows from [Bol01,
Corollary 10.12] that G(n, p) has diameter d with high
probability. Thus, when s = Θ(1), both G∗1 ∧ G2 and
G∗1 ∨G2 have diameter d with high probability. There-
fore, we present an algorithm based on matching the
d−1-th local neighborhood of two vertices. More specif-
ically, our algorithm matches i1 ∈ V (G1) and vertex
i2 ∈ V (G2) based on the number of seeded vertices
within distance d− 1 from i1 in G1 and within distance
d− 1 from i2 in G2.

Algorithm 2 Graph matching based on (d − 1)-hop
witnesses in dense regime

1: Input: G1, G2, π0, d ∈ Z.
2: Output: π̂.
3: Match all vertices: For each pair of unseeded

vertices i1 ∈ V (G1) and i2 ∈ V (G2), compute

wi1,i2

(2.13)

=
∣∣∣{j ∈ I0 : π0(j) ∈ NG1

d−1(i1), j ∈ NG2

d−1(i2)
}∣∣∣ .

Set π̂(i2) ∈ arg maxi1 wi1,i2 . Set π̂(i2) = π0(i2) for
each seeded vertex i2 ∈ I0. Declare failure if there
is any conflict.

Algorithm 2 runs in polynomial-time. The precise
running time depends on the data structures for storing
and processing graphs. To be specific, let us assume it
takes one time step to fetch the set of direct neighbors
of a given vertex. Then fetching the set NG

` (i) of all
vertices within distance ` from a given vertex i takes a
total of O(|NG

` (i)|) = O(n) time steps. Thus computing
wi1,i2 in (2.13) for a given pair of vertices i1, i2 takes at
most O(n) time steps. Hence, in total Algorithm 2 takes
O(n3) time steps. One could possibly obtain a better
running time via a more careful analysis or a better data
structure.

The difference in the analysis compared to the first
algorithm is that the (d− 1)-th local neighborhoods are
not tree-like anymore. Instead, we have to analyze the

exposure process of the two neighborhoods, for which we
use a previous result of [Bol01, Lemma 10.9] in studying
the diameter of random graphs.

2.3 An Improved Algorithm in Sparse Graph
Regime In the sparse regime where np is poly-
logarithmic, Algorithm 2 does not perform well. This is
because for two distinct vertices u, v that are close by,
their `-th local neighborhoods have a large overlap, i.e.,
|NG

` (u) ∩ NG
` (v)| is not much smaller than |NG

` (u)| or
|NG

` (v)|, rendering wi1,i2 given in (2.13) ineffective to
distinguish u from v.

However, in the sparse regime, distinct vertices u, v
only have very few common neighbors. Moreover, if
we remove vertices u, v, the non-common neighbors
become far apart, and for distinct vertices far apart,
their local neighborhoods only have a small overlap.
Therefore, we expect most of u, v’s neighbor’s `-th local
neighborhoods (after removing vertices u, v) do not have
large intersections for a suitably chosen `. This gives rise
to Algorithm 3.

Algorithm 3 Graph matching based on neighbors’ `-
hop witnesses in sparse regime

1: Input: G1, G2, π0, ` ∈ Z, η ∈ R+.
2: Output: π̂.
3: Match high-degree vertices: For all the pairs of

unseeded vertices (u, v) and for each pair of their
neighbors (i, j) with i ∈ ΓG1

1 (u) and j ∈ ΓG2
1 (v),

compute

wu,vi,j = min
x∈V (G1),y∈V (G2)

(2.14)

∣∣∣{k ∈ I0 : π0(k) ∈ NG1\{u,x}
` (i), k ∈ NG2\{v,y}

` (j)
}∣∣∣ ,

where G\S denotes G with set of vertices S re-
moved. Let

Zu,v =
∑

i∈Γ
G1
1 (u)

∑
j∈Γ

G2
1 (v)

1{wu,vi,j ≥η}.(2.15)

If Zu,v ≥ log n/ log log n − 1, set π̂(v) = u. Declare
failure if there is any conflict.

4: The remaining two steps are the same as Algo-
rithm 1.

Note that in computing the number of seeded
vertices within distance ` from both vertex i in G1 and
vertex j in G2 in (2.14), we remove vertices u, x in G1

and vertices v, y in G2, and take the minimum over all
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possible choices of x and y. As a result,

wu,vi,j

(2.16)

≤
∣∣∣{k ∈ I0 : π0(k) ∈ NG1\{u,v}

` (i), k ∈ NG2\{u,v}
` (j)

}∣∣∣ ,
where the right hand side becomes independent from the
edges incident to u and v in G∗1∨G2. This independence
is crucial in our analysis to ensure that Zu,v is small for
u 6= π∗(v) via concentration inequalities of multivariate
polynomials [Vu02].

There are two tuning parameters ` and η in Algo-
rithm 3. In our analysis later, we will optimally choose

` =

⌊
(1− ε) log n

log(np)

⌋
,(2.17)

and

η = 42`+2n1−2εα.(2.18)

As for time complexity, Algorithm 3 takes at most
O(n5+2ε) time steps. To see this, similar to Algorithm 2,
if we assume one unit time to fetch a set of direct
neighbors of a given vertex, then it takes at most O(n3)
time steps to compute (2.16) for given pairs of vertices
(u, v) and (i, j). There are at most n2+2ε such pairs.
The step of matching low-degree vertices as specified in
Algorithm 1 takes O(n3p) time steps in total. Thus in
total Algorithm 3 takes at most O(n5+2ε) time steps.

2.4 Graph Matching without Seeds Even with-
out an initial seed set revealed as side information, we
can select a random subset of vertices I0 in G1 and enu-
merate all the possible mappings f : I0 → [n] from I0
to vertices in G2 in at most n|I0| steps. Each of the
possible mappings can be viewed as seeds; thus we can
apply our seeded graph matching algorithm. Among
all possible n|I0| mappings, we finally output the best
matching which minimizes the edge disagreements. See
Algorithm 4 for details.

Since one of the possible mapping f will correspond
to the underlying true matches of vertices in I0, it
follows that if our seeded graph matching succeeds with
high probability and we are above the information-
theoretic limit (so that the true matching minimizes
the edge disagreements with high probability), the final
output will coincide with the true matching with high
probability, as stated in Theorem 1.5. More specifically,
the proof is sketched below.

Proof. [Proof of Theorem 1.5] If f : I0 → [n] is such that
f(i) = π∗(i) for all i ∈ I0, then since our seeded graph
matching succeeds with high probability, it follows that
πf = π∗ with high probability.

Algorithm 4 Seedless Graph matching via Seeded
Graph Matching

1: Input: G1, G2

2: Output: π̂.
3: Select a random subset I0 of V (G1) by including

each vertex with probability α.
4: For every possible mapping f : I0 → [n], run Seeded

Graph Matching Algorithm with a seed set I0, and
output πf .

5: Output

π̂ ∈ arg min
πf
‖G1 −ΠfG2Π>‖2F ,

where Πf is the permutation matrix corresponding
to πf .

Moreover, since we are above the information-
theoretic limit, it follows from [CK17, Theorem 1] that
with high probability,

π∗ ∈ arg min
π
‖G1 −ΠG2Π>‖2F ,

where Π is the permutation matrix corresponding to π.
Therefore, π̂ = π∗ with high probability. Finally,

since αn → ∞, it follows that |I0| is at most 2αn with
high probability. Hence, Algorithm 4 calls the Seeded
Graph Matching algorithm at most nO(αn) times with
high probability.

3 Analysis of Algorithm 1 in Sparse Regime

In this and next two sections, we sketch the proofs of
our main results. The excluded details can be found
in the full paper [MX18]. For the sake of analysis, we
assume π∗ = id, i.e., π∗(i) = i for all i ∈ [n], without
loss of generality.

Our analysis of Algorithm 1 uses the technique for
analyzing small subgraph containment [JLR11]. Let T
denote a starlike tree formed by m independent (vertex-
disjoint except for the root vertex) paths of length `
from root vertex to m distinct leaves for `,m ≥ 1. Note
that T consists of m` + 1 vertices and m` edges (See
Fig. 1 for an example of m = 3 and ` = 2). Let r(T )
denote the root vertex of T and L(T ) denote the set of
leaves of T. We say T is a subgraph of G, denoted by
T ⊂ G, if V (T ) ⊂ V (G) and E(T ) ⊂ E(G). The key of
our proof is to show that under certain conditions with
high probability:

1. For every vertex i, there exists a copy of T rooted
at i with all leaves seeded in the intersection graph
G∗1 ∧G2;

2. There is no copy of T1 ∪ T2 in the union graph
G∗1 ∨G2.
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65 7

32 4

1

T

65 7

32 4

1

98 10

11

T1 ∪ T2

65 7

32 4

1

9 10

11

T1 ∪ T2

Figure 1: Left: T is a starlike tree with m = 3, ` = 2,
r(T ) = 1 and L(T ) = {5, 6, 7}. Middle and Right: Two
examples of T1 ∪ T2 such that T1, T2 are isomorphic to
T , r(T1) 6= r(T2), and L(T1) = L(T2) = {5, 6, 7}. For
the middle, V (T1) ∩ V (T2) = {5, 6, 7}; for the right,
V (T1) ∩ V (T2) = {2, 5, 6, 7}.

3.1 Success of Algorithm 1 on the Intersec-
tion of Good Events We first introduce a sequence of
“good” events on whose intersection, Algorithm 1 cor-
rectly matches all vertices. We need the following graph
properties:

(i) there is no isolated vertex;

(ii) for any two adjacent vertices, there are at least τ
vertices adjacent to at least one of them;

(iii) For all vertices i with di ≥ τ , there are at least 2m
independent `-paths from i to 2m distinct vertices
in I0;

(iv) There is no pairs of subgraphs T1, T2 ⊂ G that
are isomorphic to T such that r(T1) 6= r(T2), and
L(T1) = L(T2) (See Fig. 1 for an illustration).

(v) For every vertex i, there exist at most m − 1
independent `-paths from i to m − 1 distinct
vertices in NG

`−1(i).

Let

• E1 denote the event such that G∗1 ∧ G2 satisfy
properties (i)–(iii);

• E2 denote the event such that G∗1 ∨ G2 satisfy
properties (iv) and (v);

• E3 denote the event such that for any two vertices
i, j that are connected by a 2-path in G∗1 ∨ G2, at
least one of the two vertices i, j must be a high-
degree vertex in G∗1 ∧G2.

We claim that on event E1 ∩ E2 ∩ E3, Algorithm 1
correctly matches all vertices. Recall that we can
assume π∗ = id and thus G1 = G∗1 without loss of
generality.

First, since G∗1 ∧ G2 satisfy graph property (iii),
it follows that in G∗1 ∧ G2, for all high-degree vertices
i, there exist 2m independent `-paths to a set S ⊂
Γ
G∗1∧G2

` (i) of 2m seeded vertices. Let S̃ = S\NG∗1∨G2

`−1 (i).
Since G∗1∨G2 satisfy graph property (v), and G∗1∧G2 ⊂
G∗1 ∨G2, it follows that∣∣∣S ∩NG∗1∨G2

`−1 (i)
∣∣∣ ≤ m− 1

and thus |S̃| ≥ m+1. Moreover, since G∗1∧G2 ⊂ G1, G2,
it follows that

S̃ ⊂ Γ
G∗1∧G2

` (i)\NG∗1∨G2

`−1 ⊂ Γ
G∗1
` (i) ∩ ΓG2

` (i).

Therefore, in both G1 and G2, there are at least m+ 1

independent `-paths from i to Γ
G∗1
` (i) ∩ ΓG2

` (i).
Second, note that on event E2, G∗1∨G2 satisfy graph

property (iv). For the sake of contradiction, suppose
there exist a pair of distinct vertices i, j and a set L of
m seeded vertices such that there exist m independent
`-paths from i to set L in G1 and m independent `-paths
from j to set L in G2. Let Tk denote the starlike tree
formed by the m independent `-paths in Gk for k = 1, 2.
Then T1, T2 ⊂ G∗1 ∨ G2 are isomorphic to T such that
r(T1) = i, r(T2) = j and L(T1) = L(T2) = L. This is in
contradiction with the fact that G∗1 ∨ G2 satisfy graph
property (iv).

It follows from the above two points that Algo-
rithm 1 correctly matches all high-degree vertices i in
G∗1 ∧G2, i.e., π̂(i) = i.

Next, we show that all low-degree vertices are
matched correctly. Fix a low-degree vertex i. Since
G∗1 ∧ G2 satisfy graph properties (i) and (ii), it must
have a high-degree neighbor j in G∗1 ∧ G2. Since the
high-degree vertex j has been matched correctly, i is
adjacent to j in G1 and i is also adjacent to π̂(j) = j
in G2. Moreover, for the sake of contradiction, suppose
there exists a pair of two distinct low-degree vertices i1
and i2 such that i1 is adjacent to a matched vertex j1
in G1 and i2 is adjacent to vertex π̂(j1) in G2. Since
π̂(j1) = j1, it follows that (i1, j1, i2) form a 2-path in
G∗1∨G2. However, on event E3, i1 and i2 cannot be low-
degree vertices simultaneously in G∗1 ∧ G2, which leads
to a contradiction. As a consequence, π̂(i) = i for every
low-degree vertex i.

Finally, to prove Theorem 1.1, it remains to show
that under the theorem assumptions, P {Ei} → 1 for all
i = 1, 2, 3, which can be found in the full paper [MX18].
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4 Analysis of Algorithm 2 in Dense Regime

Recall that ΓkG(u) and NG
k (u) denotes the set of vertices

at and within distance k from u in graph G, respectively,
as defined in (2.8) and (2.9). The key is to show that

|NG∗1∧G2

d−1 (u)| is larger than |NG∗1∨G2

d−1 (u) ∩ NG∗1∨G2

d−1 (v)|
for u 6= v by a constant factor, so that we can matches
two vertices correctly based on the number of common
seeded vertices in their two large neighborhoods.

Proof. [Proof of Theorem 1.4] Define event

A = ∩u
{∣∣∣NG∗1∧G2

d−1 (u)
∣∣∣ ≥ 3

4
(nps2)d−1

}
.

and

B = ∩u6=v
{∣∣∣NG∗1∨G2

d−1 (u) ∩NG∗1∨G2

d−1 (v)
∣∣∣ ≤ 1

2
(nps2)d−1

}
.

Using [Bol01, Lemma 10.9], one can show that P {A} ≥
1−n−10 and P {B} ≥ 1−n−10 (see the full paper [MX18]
for details).

Recall that I0 is the initial set of seeded vertices.
Define event

C = ∩u
{∣∣∣NG∗1∧G2

d−1 (u) ∩ I0
∣∣∣ > 3

5
(nps2)d−1α

}
.

Since each vertex is seeded independently with probabil-
ity α, using binomial concentration inequalities, it can
be shown that P {Cc} ≤ 2n−1. Similarly, define event

D = ∩u 6=v{∣∣∣NG∗1∨G2

d−1 (u) ∩NG∗1∨G2

d−1 (v) ∩ I0
∣∣∣ < 3

5
(nps2)d−1α

}
.

It can be shown that P {Dc} ≤ 2n−1. Hence,
P {C ∩ D} ≥ 1− 4n−1.

Finally, since G∗1∧G2 is a subgraph of both G∗1 and
G2, it follows that

N
G∗1∧G2

d−1 (i2)

⊂
{
j ∈ I0 : π0(j) ∈ NG1

d−1 (π∗(i2)) , j ∈ NG2

d−1(i2)
}
.

Similarly, both G∗1 and G2 are subgraphs of G∗1 ∨G2, it
follows that{

j ∈ I0 : π0(j) ∈ NG1

d−1 (i1) , j ∈ NG2

d−1(i2)
}

⊂ NG∗1∨G2

d−1

(
(π∗)−1(i1)

)
∩NG∗1∨G2

d−1 (i2).

Thus, on event C ∩ D, for every vertex i2 ∈ V (G2) \ I0,

wi1,i2

{
> 3

5 (nps2)d−1α if i1 = π∗(i2)

< 3
5 (nps2)d−1α o.w. .

Hence, Algorithm 2 outputs π̂ = π∗ on event C ∩ D.

5 Analysis of Algorithm 3 in Sparse Regime

Before proving Theorem 1.3, we present two key lemmas
without proofs.

The first lemma will be used later to conclude that
the test statistic Zu,u given in (2.15) is large for all high
degree vertices u.

Lemma 5.1. Suppose G ∼ G(n, p) with log n ≤ np ≤
nε, and each vertex is included in I0 with probability
α. Recall that ` and η are given in (2.17) and (2.18),
respectively. Assume η ≥ 4 log n. Let G\S denote the
graph G with set of vertices S removed. Then with
probability at least 1− n−1+o(1),∑
j∈ΓG1 (i)

1{
|ΓG\S` (j)∩I0|≥η

} ≥ di − 1, ∀S s.t. ∈ S, |S| ≤ 3.

The second lemma is useful to conclude that the
test statistic Zu,v given in (2.15) is small for all distinct
vertices u, v.

Lemma 5.2. Assume the same setup as Lemma 5.1.
With probability at least 1 − 4/n, for all distinct u, v,
there exists a constant C depending only on ε such that∑
i∈ΓG1 (u)

∑
j∈ΓG1 (v)

1{
|NG\{u,v}` (i)∩NG\{u,v}` (j)∩I0|≥η

} ≤ C.
With Lemma 5.1 and Lemma 5.2, we are ready to

finish the proof of Theorem 1.3.

Proof. [Proof of Theorem 1.3] Recall that τ is given in
(2.12) and the definition of high-degree vertices. We
first prove that Algorithm 2 correctly matches the high-
degree vertices in G∗1 ∧G2 with high probability.

Recall the definition of Z give in (2.15). Applying
Lemma 5.1 with G = G∗1 ∧ G2, we get that with high
probability, for all high-degree vertices u,

Zu,u ≥ τ − 1 =
nps2

log(nps2)
− 1.

Moreover, by definition,

wu,vi,j

≤
∣∣∣{k ∈ I0 : π0(k) ∈ NG1\{u,v}

` (i), k ∈ NG2\{u,v}
` (j)

}∣∣∣
≤
∣∣∣NG∗1∨G2\{u,v}

` (i) ∩NG∗1∨G2\{u,v}
` (j) ∩ I0

∣∣∣ .
Applying Lemma 5.2 withG = G∗1∨G2, we get that with
high probability, Zu,v ≤ C for all u 6= v for a constant
C > 0 only depending on ε. Since for sufficiently large n,
τ ≥ C+1, it follows that Algorithm 2 correctly matches
all high-degree vertices with high probability.

The proof of correctness for matching low-degree
vertices is the same as Algorithm 1 and thus omitted.
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[Bol01] Béla Bollobás. Random Graphs (2nd Edition).
Cambridge Studies in Advanced Mathematics, 2001.

[CFSV04] Donatello Conte, Pasquale Foggia, Carlo San-
sone, and Mario Vento. Thirty years of graph matching
in pattern recognition. International journal of pattern
recognition and artificial intelligence, 18(03):265–298,
2004.

[CK16] Daniel Cullina and Negar Kiyavash. Improved
achievability and converse bounds for erdos-rényi graph
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